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CHAPTER A-7 PROBABILISTIC LIMIT STATE ANALYSIS                             

(RELIABILITY ANALYSIS) 

A-7.1  Key Concepts 

The traditional factor-of-safety approach to limit state problems provides limited insight into 

failure probability.  For example, typically, conservative input values (shear strength and water 

pressures) are assumed in stability analysis, and if the resulting factor of safety (FS) satisfies 

established criteria, the likelihood of failure is considered "low," but it is not quantified.  The 

minimum FS required to produce a particular low value of probability depends on the material 

types and available data.  A steep slope in dry granular material may have a very low probability 

of sliding with a factor of safety below 1.2; in that case, the main parameter of interest is the 

effective stress friction angle, φ', which varies over a fairly small range.  If, instead, the slope is 

an excavation in saturated, soft clay, a much higher factor would be required to achieve the same 

probability, because undrained strength of clay has much greater variability and uncertainty than 

does the friction angle of sand.  (How low of a probability is “low enough” to be acceptable 

depends on the situation, considering the consequences of failure and the cost of achieving a 

lower probability, as described elsewhere in this manual.) 

Limit state analyses of concrete or embankment dams or levees are not always easy to 

decompose into a simple event tree for risk analysis, for example, if there are several 

independent variables that affect stability, such as strengths of the various materials involved and 

piezometric levels in different portions of a slope.  One could, of course, discretize the range of 

possible strength values for each material and the ranges of possible piezometric levels into 

many small increments, and combine all of them in an event tree.  However, with ten branches 

for five ranges of Material A strength, each leading to five branches for Material B strength, each 

leading to four branches for the piezometric level at Point 1, and so on, the number of branches 

and nodes would rapidly become intractable.  A practical alternative is to develop probability 

distributions for the various parameters, and apply Monte Carlo (MC) analysis to determine the 

probability that the actual factor of safety is below some threshold value associated with 
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instability or other type of bad performance.  That is the main subject of this chapter.  Also 

covered is the First Order Second Moment (FOSM) method, a mathematically simpler, though 

somewhat less precise, approach to the same problem that can be performed using output from 

most analysis programs. Further discussions of MC and FOSM analyses and a general discussion 

of probabilistic analyses are included in Christian (2004). 

Probabilistic limit state analysis is most likely to be applied to a possible future condition, such 

as unprecedented water levels against a levee, a proposed excavation, earthquake loading, or the 

effect of increased rainfall on an existing landslide.  For those cases, it may not be possible to 

predict pore-water pressures or soil shear strengths with sufficient precision to analyze the slope 

deterministically and produce a single "correct" FS.  For an existing structure with no anticipated 

change in loading, stability has been observed and pore pressures may be monitored, but one still 

might want to assess how close it is to the verge of instability in case of some unanticipated 

condition like plugging of drains. 

The type of probabilistic stability analysis described in this chapter is sometimes referred to as 

"reliability analysis."  When, for example, there are uncertainties about the shear strength and 

extent of liquefied foundation soils, reliability analysis can be useful for assessing the conditional 

probability of slope instability, given occurrence of an earthquake.  Reliability analysis is 

typically not used on its own, as the sole method for estimating failure probability.  Tempered by 

engineering judgment and full awareness of the biases and uncertainties that affect stability (or 

other) calculations, it is, however, a useful tool to inform expert judgment on conditional 

probabilities to be used in an event tree or other application.   

For the purposes of this chapter, the probability of unsatisfactory performance is generally 

defined as the probability that the FS is less than 1.0.  Other threshold values can be used.  For 

example, if the dam or levee is particularly susceptible to deformation damage, a value of the 

safety factor slightly greater than 1.0 may better define the threshold for unsatisfactory 

performances (El-Ramly et al., 2002), and the probability of FS being below that value could be 

calculated instead. 
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In performing a probabilistic analysis, for example, to estimate the probability of sliding failure, 

either the factor of safety or the driving and resisting forces are characterized by probability 

distributions, rather than point values.  The latter is illustrated in Figures A-7-1a and -1b.  Each 

shows the Probability Distribution Functions (PDFs) for driving force and resisting force in blue 

and orange, respectively.  The mean forces and the mean factor of safety are the same in both 

figures, but the driving and resisting forces are more precisely determined or constrained in 

A-7-1a.  It can be seen that the chance that the driving force is greater than the resisting force is 

much greater in A-7-1b.  (By numerical integration or Monte Carlo trials, one would find that the 

probabilities are about 0.001 for the well-constrained example, and 0.04 in the poorly 

constrained example.) 

 

Figure A-7-1a Probability Distribution Functions for Well-Constrained Driving and 

Resisting Forces 
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Figure A-7-1b Probability Distribution Functions for Poorly Constrained Driving and 

Resisting Forces. 

With the availability of commercial computer analysis tools, MC reliability analysis has become 

much easier to perform.  MC analysis using estimated PDFs for various input parameters 

(material shear strengths, uplift pressures, geometric conditions, etc.) is used most commonly to 

develop a PDF for the factor of safety.  From that, the probability that the FS is less than 1.0 (or 

other value representing unsatisfactory performance) can be estimated.  MC analysis is a built-in 

feature of some stability programs (e.g. GRAVDAM for concrete gravity dams and SLOPE/W 

for embankment dams).  There are also macro add-ins that make it possible to perform the same 

functions using a spreadsheet program like Microsoft ® Excel, provided a deterministic stability 

analysis can be programmed in the spreadsheet.  Available add-ins include Palisade 

Corporation’s Decision Tools Suite (which includes the @Risk module), ModelRisk by Vose 

Software, and Crystal Ball by Decisioneering, Inc.  (Very simple MC analysis can also be done 

using the built-in features of Microsoft ® Excel.) 

The stability programs do have limitations, however.  Not all of them have the ability to display 

sensitivity rank coefficients to describe the relative importance of variation in the different input 

parameters (described below); hence, some additional judgment and sensitivity runs of the MC 

model may be needed.  Additionally, if none of the Monte-Carlo trials produce calculated factors 
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of safety less than 1.0, SLOPE/W indicates that the probability of failure is zero.  The probability 

is not actually zero but is likely a small number out on the tail of the distribution.  In addition, the 

MC analysis addresses only uncertainty in the stability input parameters, such as material 

properties and pore pressures, not uncertainty in the stability analysis procedure, or potential 

errors or misunderstanding.  The risk analyst must apply judgment in evaluating the numerical 

results and estimating probabilities.  When it calculates the reliability index (described below), 

SLOPE/W assumes that the factor of safety fits a normal distribution function, which is not 

necessarily so.  GRAVDAM incorporates a cracked base analysis that must also be used with 

caution – refer to the chapter on Concrete Gravity Dams.   

To use the Monte Carlo approach in a spreadsheet, the standard deterministic equations for 

calculating the factor of safety are programmed into a spreadsheet, but instead of the input 

parameters having single values, they are entered as random variables with assigned PDFs.  

Then, instead of calculating a single value for the factor of safety, the calculation is performed 

many (often thousands of) times, each time with parameter values sampled according to their 

respective PDFs, so that each trial produces a possible value of the FS.  The probability of failure 

may be considered to be equal to the fraction of the trials that produced FS<1.0 (or other 

threshold value).  Alternatively, a probability distribution function can be fitted to the safety 

factors resulting from the numerous Monte Carlo trials, with the probability of FS<1.0 being 

calculated from the form of the PDF.  Example problems follow. 

A-7.2  Example: FOSM and MC Analysis for Heave at the Toe of a Levee 

The probabilistic approach can be applied to the assessment of safety against heave at the toe of 

a dam or levee, by any of several different methods that include Monte Carlo simulation and the 

First Order Second Moment (FOSM) method. This example will provide details of the FOSM 

method and a comparison of Monte Carlo and FOSM analyses. Further details of the FOSM 

method can be found in Wolff (1994) and USACE Engineer Technical Letter 1110-2-556. 

Levees are often constructed in a geologic environment where a thin clay blanket exists over a 

thick pervious sand aquifer, and levee evaluations consider the potential for heave of this thin 
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clay blanket due to pore pressures in the pervious aquifer. This geometry is shown in Figure A-7-

2.  

 

Figure A-7-2 Model Geometry for Levee Heave Calculation 

The factor of safety against heave can be calculated by comparing the gradient across the clay 

blanket at the levee toe to the critical gradient for the clay blanket (FS = icrit/i). The gradient at 

the levee toe can be calculated by either developing a seepage analysis in a finite element method 

program such as SEEP/W or using Blanket Theory in closed form equations (TM 3-424). This 

example assumes an infinite length foundation with a semipervious clay blanket. The gradient 

across the clay blanket at the levee toe is calculated with the following equations from blanket 

theory. Figure A-7-3 illustrates the symbols used in the equations. 
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Figure A-7-3 Model Geometry for Levee Heave Calculation 

𝑖 =
ℎ𝑜

𝑧
 

Equation A-7-1 

Where: 

 ho = Excess head at the levee toe calculated using the equation below 

 z = Thickness of the clay blanket 

ℎ𝑜 = 𝐻 (
𝑥3

𝑠 + 𝑥3
) 

Equation A-7-2 

Where: 

 x3 = Distance from the landside levee toe to the effective seepage exit calculated as 

shown in the equation below. 

 s = Distance from the effective seepage entry to the landside toe of the levee and is 

equal to x3 plus the length of the base of the levee (in this problem the seepage 
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entrance and seepage exit are equal distances from the landside and waterside toes 

of the levee). 

 H = Net head on the levee 

𝑥3 = √
𝑘𝑓𝑧𝑑

𝑘𝑏
 

Equation A-7-3 

Where: 

 kb = Vertical hydraulic conductivity of the clay blanket 

 kf = Horizontal hydraulic conductivity of the pervious aquifer 

 d = Thickness of the pervious aquifer 

The critical gradient is calculated using the following equation: 

𝑖𝑐𝑟𝑖𝑡 =
𝛾′

𝛾𝑤
 

Equation A-7-4 

Where: 

 γ’ = Buoyant unit weight of clay blanket 

 γw = Unit weight of water = 62.4 pcf 

The total unit weight of the clay blanket was assumed to be 115 pcf (buoyant unit weight 52.6 

pcf) giving a critical gradient of approximately 0.85 (assumed to be deterministic for this 

example). The pervious sand aquifer was assumed to have a horizontal hydraulic conductivity of 

1.0 x 10-3 cm/sec. 
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For this evaluation of the probability of heave at the levee toe, the ratio of sand aquifer to clay 

blanket hydraulic conductivity, thickness of the clay blanket, and thickness of the sand aquifer 

were each varied by plus and minus one standard deviation, as shown in Table A-7-1. 

Table A-7-1 Variables in Levee Heave Analysis 

Input Variable Mean Standard Deviation 

Ratio of aquifer horizontal hydraulic 

conductivity to blanket vertical hydraulic 

conductivity 

1000 400 

Thickness of clay blanket (ft) 8 2 

Thickness of sand aquifer (ft) 80 5 

 

The usual output of a FOSM analysis is the reliability index, β, which is then used to calculate 

the probability of FS<1.0. To calculate β, the FOSM method, described below, uses a Taylor 

series expansion, simplified by using only the first term (hence, "First Order").  The expected 

value of the loading (in this case, the vertical gradient through the blanket layer at the levee toe) 

is calculated using the expected value of all random variables in the analysis, for comparison 

with the critical gradient assumed to cause heave (0.85 for this example problem). Each random 

variable is then varied by plus and minus one standard deviation (one at a time) to calculate the 

gradient with each change in the variable. The variance between the gradient calculated at plus 

and minus one standard deviation for each random variable is then calculated by taking the 

difference between the calculated gradient values. The total variance of the gradient is the sum of 

each of the variance calculations for each random variable. The expected value of the gradient 

calculated using the expected values for each random variable and the total variance are then 

used to calculate the reliability index and the probability of FS<1.0. 

The FOSM evaluation was performed for water levels on the floodside of the levee ranging from 

the levee toe (El 400 ft) to the levee crest (El 420 ft). The results of the calculation for the 
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probability of heave at the levee toe with water at the levee crest are shown in Table A-7-2, and 

the calculations included in this table are detailed below. The pink cells show the change in 

hydraulic conductivity ratio by plus and minus one standard deviation. These two rows show the 

calculation of the gradient with the change in hydraulic conductivity. The rows with the orange 

cells show the calculation of the gradient with the change in thickness of the blanket layer by 

plus and minus one standard deviation, and the rows with the green cells show the calculation of 

the gradient with the change in thickness of the pervious aquifer. The expected value of the 

gradient with the mean values of all the input parameters, E[i], is 1.170, as show in Table A-7-2. 

Table A-7-2 FOSM Calculations for Water Surface at Levee Crest 

 

A variance is calculated for each random variable, as shown in the last two columns of Table A-

7-2. As shown in the equation below, the variance is the difference in the gradient when a 

random variable is varied by plus and minus one standard deviation. The variance component for 

each random variable is calculated using the following equation. 

𝑉𝑎𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = (
𝜕𝑖

𝜕(𝑘𝑓 𝑘𝑏⁄ )
) 𝜎𝑘𝑓 𝑘𝑏⁄

2 ≈ (
𝑖+ − 𝑖−

2𝜎𝑘𝑓 𝑘𝑏⁄
)

2

𝜎𝑘𝑓𝑘𝑏

2 = (
𝑖+ − 𝑖−

2
)

2

 
Equation A-7-5 

WSE (ft) = 420 Head (ft) = 20

Kf (cm/s) Kb (cm/s) kf/kb z (ft) d (ft) x3 (ft) s ho I

Variance 

Component

% of 

Variance

1.00E-03 1.00E-06 1000.0 8 80 800 910 9.357 1.170

1.00E-03 1.67E-06 600.0 8 80 620 730 9.185 1.148

1.00E-03 7.14E-07 1400.0 8 80 947 1057 9.451 1.181 0.0003 0.3%

1.00E-03 1.00E-06 1000.0 6.0 80 693 803 9.265 1.544

1.00E-03 1.00E-06 1000.0 10.0 80 894 1004 9.421 0.942 0.0906 99.7%

1.00E-03 1.00E-06 1000.0 8 75 775 885 9.337 1.167

1.00E-03 1.00E-06 1000.0 8 85 825 935 9.375 1.172 0.0000 0.0%

K Ratio blanket T sand T Total 0.0909 100%

Expected value E[i] = 1.170 E[ln i] = 0.124

Var[i] = 0.091

Std. Dev. [i] = 0.301 sigma [ln i] = 0.254

COV[i] = 0.258

i critical = 0.850ln(i critical) = -0.163 Pr(f)= 87.11%

FS = 0.73 Beta= -1.13
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Where: 

 i+ = Gradient when random variable of interest is increased by 1σ 

 i- = Gradient when random variable of interest is decreased by 1σ 

For Table A-7-2, the variance component for the blanket to aquifer hydraulic conductivity ratio 

is 0.0003. Total variance (Var) is the sum of the variance calculations for each random variable. 

As shown in Table A-7-2, it is 0.0909 for this calculation. The standard deviation of i, (σi), is the 

square root of the variance, which is 0.301 for this calculation. The coefficient of variation of i is 

given by the following equation and is 0.258 for this calculation. 

𝑉𝑖 =
𝜎𝑖

𝐸[𝑖]
 

Equation A-7-6 

The exit gradient is assumed to be a lognormally distributed random variable with probabilistic 

moments E[i] = 1.170 (expected value of exit gradient) and σi = 0.301. If the gradient is 

lognormally distributed, then ln(i) is normally distributed. The standard deviation of the natural 

log of i is 

𝜎ln 𝑖 = √ln(1 + 𝑉𝑖
2) 

Equation A-7-7 

In this calculation, σlni =  0.254. The expected value of the natural log of i is calculated using the 

following equation. 
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𝐸[ln 𝑖] = ln 𝐸[𝑖] −
𝜎ln 𝑖

2

2
 

Equation A-7-8 

For this calculation E[lni] = 0.124. As calculated above, the critical gradient at this site is 0.85, 

and the probability of failure is assumed to be the probability that ln(i) is greater than ln(0.85) or 

in other words, the probability that the FS<1.0. This probability can be evaluated two ways using 

normal distribution functions built into Excel. The first equation is: 

                      𝑃𝑟𝑓 = 1 − 𝑛𝑜𝑟𝑚. 𝑑𝑖𝑠𝑡(𝑥, 𝑚𝑒𝑎𝑛, 𝑠𝑡𝑑. 𝑑𝑒𝑣, 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒)

= 1 − 𝑛𝑜𝑟𝑚. 𝑑𝑖𝑠𝑡(−0.163, 0.124, 0.254, 𝑇𝑅𝑈𝐸) = 87.11% 

 where: 

norm.dist = function to return the normal distribution for the specified mean and standard 

deviation 

 x = lnicrit  

 mean = E[lni] 

 std. dev = σlni 

cumulative= TRUE to return the cumulative distribution function, FALSE to return the 

probability mass function 

The second way of calculating the probability is to calculate the reliability index using the 

following equation: 

𝛽 =
ln 𝑖𝑐𝑟𝑖𝑡 − 𝐸[ln 𝑖]

𝜎ln 𝑖
 

Equation A-7-9 
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This equation yields a reliability index of -1.13. The probability of FS<1.0 is then calculated 

using the following equation in Excel: 

𝑃𝑟𝑓 = 1 − 𝑛𝑜𝑟𝑚. 𝑠. 𝑑𝑖𝑠𝑡(𝑧, 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒) = 1 − 𝑛𝑜𝑟𝑚. 𝑠. 𝑑𝑖𝑠𝑡(−1.13, 𝑇𝑅𝑈𝐸) = 87.11% 

 where: 

norm.s.dist= function to return the standard normal distribution (has a mean of zero and a 

standard deviation of one). This function replaces the use of a table of standard 

normal curve areas. 

 z = reliability index, β 

cumulative= TRUE to return the cumulative distribution function, FALSE to return the 

probability mass function 

For this analysis when the water elevation is at the levee crest, the probability of FS<1.0 is 

87.11%, as shown in Table A-7-2. The probability of FS<1.0 can also be calculated for lower 

water elevations. The results of these calculations are plotted in Figure A-7-4. 
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Figure A-7-4 Probability of Levee Heave using FOSM Methods 

Reliability analysis such as FOSM is typically not used as the sole method for estimating failure 

probability, and the results of such analysis must be moderated using engineering judgment. In 

addition, the results may change depending on which variables are assumed to vary in the 

analysis. In the example above, the thickness of the blanket, z, provides the largest contribution 

to the variance as shown in Table A-7-2. If this variable is assumed to be constant in the analysis, 

the probability of FS<1.0 will change. If one of the other two variables, sand to blanket hydraulic 

conductivity or aquifer thickness, are assumed to be constant in the analysis, the probability of 

FS<1.0 is largely unchanged. 

FOSM methods can also be used to calculate levee heave when a finite-element-method seepage 

analysis is performed and Monte Carlo simulations require too many iterations. For each change 

in material properties, a separate seepage analysis is performed. The excess pore pressure at the 

levee toe beneath the clay blanket is measured from each analysis and the gradient across the 

blanket is calculated. These gradients will then be used in the FOSM analysis to calculate the 

probability of heave as discussed above. 



 A-7-15  

 

The heave analysis shown above can also be performed using a Monte Carlo simulation. A 

Monte Carlo simulation was performed using the software @Risk. The equations from blanket 

theory were programmed into an Excel spreadsheet.  In this simulation, truncated normal 

distributions (truncated to 2 standard deviations above and below the mean value based on an 

understanding of the site characteristics) were input for the variables used to model the 

sand/blanket hydraulic conductivity ratio, the blanket thickness, and the sand thickness.  These 

values are shown in Table A-7-3. Normal distributions are often truncated because the standard 

normal distribution is unbounded which can result in negative values that may not make sense.  

The @Risk function for the blanket thickness, z, for example, is:  

RiskNormal(8,2,RiskTruncate(4,12)).   

Table A-7-3 Variable Distributions for Monte Carlo Simulation 

Variable Mean Standard Deviation Min Max 

kf/kb 1000 400 200 800 

z (ft) 8 2 4 12 

d (ft) 80 5 70 90 

 

After entering the input distributions in the spreadsheet cells, the factor of safety cell is selected 

as the output and the simulation settings are adjusted.  In this case, 10,000 trials were specified.  

For each trial, each input parameter is sampled according to its probability density function, and 

an individual factor of safety is calculated.  This results in a record of the calculated factors of 

safety for the entire simulation.  It is a simple matter to sort the output factors of safety in 

ascending or descending order using the “sort” command of the spreadsheet program.  The 

probability of FS<1.0 is taken as the number of trials with calculated factor of safety less than 

1.0 divided by the total number of trials.  In the case with the water surface at the levee crest, 

9,590 trials produced a factor of safety less than 1.0.  Therefore, the probability of FS<1.0 is 

estimated to be 9,590/10,000 or 0.959. 
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The results are shown in Table A-7-4 and compared to the FOSM results. This comparison 

indicates that FOSM evaluations and Monte Carlo simulations provide similar trends in results. 

However, the use of a different distribution, such as a triangular distribution or non-truncated 

normal distributions may provide different results so the distribution of any variable should be 

carefully considered. The first three Monte Carlo simulations (at water levels between 402 ft and 

406 ft) did not give any factors of safety less than 1.0 indicating the probability of failure is less 

than 1/10,000.  It should be noted that when the Monte-Carlo analysis did not return any factors 

of safety less than 1.0 in 10,000 iterations, the probability of failure was set to zero, although a 

reliability index could have been calculated and a probability based on the tails of a fitted 

distribution could have been estimated as described later.  The FOSM results give similar results 

for water elevations 402 ft and 404 ft, but give a higher probability of heave at 406 ft. 

Table A-7-4 Comparison of Monte Carlo and FOSM Analysis Results 

Water Level Monte Carlo Simulation 

Probability of Heave at Levee 

Toe 

FOSM Analysis 

Probability of Heave at 

Levee Toe 

402 0 0 

404 0 9.24E-06 

406 0 0.00015 

408 0.0088 0.0066 

410 0.079 0.055 

412 0.22 0.19 

414 0.43 0.39 

416 0.66 0.60 

418 0.85 0.76 

420 0.96 0.87 

 



 A-7-17  

 

To help understand which input parameter distributions have the greatest effect on the results, 

@Risk provides a list of correlation (Spearman Rank) coefficients.  Those input distributions 

with the highest positive or negative correlation coefficients affect the results most.  A positive 

coefficient means the variable is positively correlated with the results (as the variable increases 

the factor of safety also increases), and similarly a negative coefficient means the variable is 

negatively correlated with the results (when the variable increases, the factor of safety 

decreases).  For example, an increase in pore pressure would result in a decrease in factor of 

safety, as would be expected. 

For the example just described, the coefficients are shown in Table A-7-5.  It can be seen that the 

thickness of the clay blanket, z, affects the results the most, which is consistent with what was 

observed in the FOSM analysis.  The distributions that are input to the analysis, while accounting 

for uncertainty, in themselves are usually not well constrained.  Therefore, an important use of 

this table is to identify which distributions should be considered for parametric or sensitivity 

evaluations.  For example, in this case we may have had limited boring and mapping information 

to estimate the blanket thickness and wish to know how the probability of FS<1.0 would change 

if the mean blanket thickness was 9 feet with a standard deviation of 6 feet. In the MC analysis, 

the normal distribution of the blanket thickness was truncated at 0 feet and 21 feet. Running that 

analysis indicated the mean factor of safety for each water level increased, but for the water 

levels below 414, the probability of FS<1.0 also increased as shown in Table A-7-6 when 

compared to table A-7-4. 

Table A-7-5 Correlation coefficients for water surface at the levee crest 

Rank Name Cell Correlation 

1 z $B$4 1.0 

2 kf/kb $E$4 -0.06 

3 d $H$4 0 
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Table A-7-6 Comparison of Monte Carlo and FOSM Sensitivity Analysis Results 

Water Level Monte Carlo Simulation 

Probability of Heave at Levee 

Toe 

FOSM Analysis 

Probability of Heave at 

Levee Toe 

402 0.027 0.0029 

404 0.063 0.023 

406 0.11 0.06 

408 0.16 0.108 

410 0.23 0.16 

412 0.30 0.21 

414 0.38 0.27 

416 0.46 0.32 

418 0.55 0.37 

420 0.62 0.41 

 

Apparently, at lower river stages, the probability of FS<1 comes only from the worst "perfect 

storm" combinations of parameters.  If you increase the probability of the thinnest blankets by 

increasing the standard deviation a lot relative to the increase in the mean, you would increase 

the probability of "thin" blankets and FS<1.  The reverse would happen in the high-river cases, 

as observed because, by increasing both the mean and the standard deviation, the number of 

cases with greater thickness increased, reducing the number with FS<1.  As can be seen, a 

change in the input distribution for the key variables can have an effect (sometimes unpredictable 

upon initial blush) on the results, and sensitivity analyses can help to establish a range or 

distribution of probabilities for input to an event tree. 
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A-7.3  Example: RCC Gravity Dam Stability 

The probabilistic method is also applicable to sliding of concrete structures.  For example, 

construction of a 160-foot-high roller-compacted concrete (RCC) gravity dam in a wide canyon 

was suspended for winter shut down after the RCC reached a height of 20 feet.  The following 

construction season, the cold joint surface of the previous year was thoroughly cleaned and 

coated with mortar, and the remainder of the dam was placed.  A gallery was constructed such 

that the gallery floor would be about 5 feet above tailwater during PMF conditions.  A line of 

three-inch-diameter drains, spaced at 10 feet, was angled downstream from the gallery, 

intersecting the cold joint about 28 feet downstream of the axis.  Although a 3.5-foot-high 

parapet wall was constructed on the upstream side of the dam crest, the spillway was sized to 

pass the probable maximum flood (PMF) without encroaching on the wall.  Due to concerns 

about the strength of the cold joint, five six-inch diameter cores were taken one year later.  Two 

of the five cores were not bonded at the lift joint.  The remaining three were tested in direct shear 

at varying normal stresses.  Although only three data points were generated, the results were well 

behaved as shown in Figure A-7-5.  Accounting for about 40 percent de-bonded area of the joint, 

it was determined that the design intent was still met.  Several years later, the PMF was revised 

and a new flood-frequency analysis was performed.  Although the new PMF did not overtop the 

dam, it encroached about 2.3 feet onto the parapet wall, with no significant change in the 

tailwater elevation.  Additional stability analyses were undertaken to evaluate the likelihood of 

failure under the new loading condition. 
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Figure A-7-5 Direct Shear Test Results for Suspect RCC Lift Joint 

The dam cross section shown in Figure A-7-6 was used in the analysis.  The vertical stress at the 

upstream face is calculated considering the standard beam-column equation from mechanics of 

materials: σv = P/A ± Mc/I to account for the vertical load (P) and the moment (M) induced by 

the reservoir for the combined stress condition, as indicated by Watermeyer (2006).  Initially, 

uplift along the cold joint is approximated by a bi-linear distribution of pressures, varying from 

full reservoir pressure at the upstream face, to a reduced pressure at the line of drains, to 

tailwater at the downstream face.  The total head at the line of drains is approximated as Fd * 

(Reservoir El. – Tailwater El.) + Tailwater El., where Fd is the drain factor (1-efficiency).  The 

pressure head is determined by subtracting the elevation of the potential sliding surface from the 

total head, and the pressure head is converted to an uplift pressure for analysis.  The effective 

stress is calculated along the potential sliding plane by subtracting the uplift pressure from the 

total stress, and where the effective stress is calculated to be tensile, no resistance is included for 

that portion of the plane.  Since the locations of potential joint de-bonding are unknown, the cold 

joint was also assumed to be cracked to the point of zero effective stress in this case.  Full 

reservoir pressure was assumed in the crack until it reached the drains.  Then, approximate 

equations were used to adjust the drain factor to account for the crack length (Amadei et al., 
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1991).  These equations require the “allow circular reference” feature of Excel to iterate on a 

crack length.  The factor of safety was then calculated from the familiar equation FS = [c’A + 

(W-U)tanφ’]/D, where W is the vertical load, A is the bonded area, U is the uplift force, and D is 

the driving force taking into account both the downstream-directed reservoir load and the 

upstream-directed tailwater load. 

 

Figure A-7-6 Cross-sectional Geometry of an RCC Gravity Dam 

The equations for limit equilibrium analysis were programmed into a spreadsheet.  Input 

variables that were defined as distributions included the following: (1) drain factor Fd, (2) 

tangent of the intact friction angle on the potentially weak lift joint φ’, (3) intact cohesion on the 

potentially weak lift joint c’, (4) percentage of the joint that is intact, and (5) the RCC unit 

weight.  Table A-7-7 defines the distributions that were used. 
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Table A-7-7 Summary of Concrete Input Properties 

Property Distribution Minimum Mode Maximum 

Initial Drain 

Factor, Fd 

Uniform 0.33 n/a 0.75 

φ’ (degrees) Triangular 43 50 57 

Intact c’ (lb/in2) Triangular 50 100 150 

Percent Intact Triangular 43 60 71 

Unit Weight 

(lb/ft3) 

Uniform 146 n/a 152 

 

The RCC unit weight, based on measurements from the core samples, had only limited 

variability, and a uniform distribution between the minimum and maximum measured values was 

used. For the other parameters: 

 The initial drain factor was taken to be a uniform distribution based on piezometer 

measurements and experience with other concrete dams of similar geometry. 

 The coring would suggest that about 60 percent of the lift surface was bonded, assuming 

the cores were not mechanically broken at that elevation during drilling.  To estimate a 

likely range, the percentage was adjusted by assuming the drilling of two more holes 

yielded bonded lifts (upper bound estimate), or yielded unbonded lifts (lower bound 

estimate). 

 Both the cohesion and tangent friction angle were defined as triangular distributions, with 

the peak or mode of the distribution estimated using the straight line fit shown in Figure 

A-7-5.  High and low values were estimated based on experience with other direct shear 

tests on concrete joints, and interpolating other reasonable lines through the data points. 
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The minimum safety factor calculated from 10,000 iterations was 1.43, with a mean value of 

2.42.  The results are shown as a bar chart, with a normal distribution fitted to them in Figure 

A-7-7.  The sensitivity analysis indicated the cohesion had the largest effect on the results, as 

shown in Table A-7-8, and additional sensitivity studies on that parameter would be appropriate. 

 

Figure A-7-7 Output Factor of Safety Distribution for RCC Dam with a Fitted Normal 

Distribution Superimposed, Assuming Independence of Cohesion and Friction Angle. 

Table A-7-8 RCC Dam Sensitivity Rankings 

Rank Name Cell Regression 

1 Intact Cohesion (psi) $B$17 0.759 

2 Tan(Friction Angle) $B$16 0.412 

3 Percent Intact $B$18 0.369 

4 Drain Factor $B$15 -0.312 

5 Concrete Density (pcf) $B$19 0.097 
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Experience suggests that the cohesion and friction angle are negatively correlated.  That is, as the 

friction angle becomes greater, a line that passes through the data would intercept the vertical 

axis at a lower cohesion value, and vice versa.  @Risk allows the user to correlate input 

variables, such that in this case, a high value of cohesion will only be sampled with a low value 

of friction angle, and vice versa.  Since there were limited data points upon which to base a 

correlation in this example, a negative correlation coefficient of 0.8 was selected, meaning that 

the highest cohesion value doesn’t have to be associated with the absolute lowest friction angle, 

but the general trend of the correlation is maintained.  The minimum factor of safety calculated 

with this correlation is 1.79, higher than if the correlation is not maintained, indicating that 

ignoring the correlation would be conservative in this case. 

Since the factor of safety never dropped below 1.0 in any of the Monte Carlo trials, it is not 

possible to determine the probability of FS<1.0 directly as in the embankment dam example 

below.  It is possible that increasing the number of trials would achieve better coverage of all 

possible permutations of the random variables and find some combinations that give FS<1.0, 

which is an easy thing to test.  In this case, however, with the most conservative assumptions 

allowed by the PDFs on input parameters, the stability analysis would not yield FS<1.0; 

instability is simply not possible within the assumptions of the analysis and its input parameters.  

It can really only be said that the probability of FS<1.0 is "small," but it is not zero because of 

potential errors or biases in the analysis or its inputs, that is, because of epistemic (model) 

uncertainty.  

Although numerical estimates may not be very meaningful if the epistemic (model) uncertainty 

is not accounted for, this problem has sometimes been addressed by fitting a probability 

distribution to the FS results, and applying reliability theory.  To do this, the “reliability index,” 

β, is introduced.  It is simply the number of standard deviation units between the mean value and 

the value representing failure.  Figure A-7-7 above shows the output factor of safety distribution 

for the first case (i.e., with cohesion and friction angle assumed to be independent of each other).  

Goodness-of-fit tests indicate the FS distribution follows a normal distribution quite well within 

the range of sampled output values.  The reliability index, in this case relative to a safety factor 

of 1.0, is (FSAVG – 1.0)/σF, where FSAVG is the mean safety factor and σF is the standard 
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deviation of the safety factor distribution, or β = (2.425-1.0)/0.3126 = 4.56.  There is a standard 

function in Microsoft Excel that allows one to estimate the probability of FS<1.0 directly from 

the reliability index, namely 1-NORM.S.DIST(β).  This gives the probability of FS<1.0 as 2.6 x 

10-6.  This is a very low number, which should be expected, given the high mean factor of safety 

and the fact that the minimum value calculated in 10,000 iterations never dropped below 1.4.  

When the probability of failure is determined to be so far out on the tails of a distribution as in 

this case, the number generated in this fashion is highly uncertain and it is sensitive to the form 

assumed for the PDF.  It may not be appropriate to report a quantitative probability produced this 

way, although the exercise to generate it can still be useful for understanding the problem, and 

reporting it with proper caveats can still be informative.   

In some cases, the output factors of safety may not follow a normal distribution, but rather a 

lognormal distribution. For those situations, the same method can be used to estimate the 

probability of FS<1.0.  The only difference is that the reliability index is calculated with a 

different formula (Scott et al., 2001), as follows: 

 2

2

log

1ln

1
ln

FS

FS

mean

normal

V

V

FS


















  

Equation A-7-10 

Where FSmean is the average factor of safety of the Monte Carlo output distribution and VFS is the 

coefficient of variation for the factor of safety, equal to the standard deviation divided by the 

mean. 

A-7.4  Example: Screening-Level Check of Embankment Post-Liquefaction Stability 

Consider the homogeneous embankment dam shown in Figure A-7-8.  The dam is in a 

seismically active area.  What appears to be a continuous clean sand layer, approximately four to 

six feet thick, was encountered in three borings, approximately eight feet below the dam-

foundation contact.  The minimum corrected (N1)60 blow count values encountered in this layer 
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varied from 13 to 15 depending on the boring.  The toe of the dam is wet, indicating a high 

phreatic surface and saturated foundation materials in that area.  Given that the sand layer 

liquefies, what is the probability of post-liquefaction instability as defined by FS<1.0? 

 

Figure A-7-8 Example Embankment Dam Geometry 

It is necessary to perform rigorous stability analysis to identify the critical failure surface as well 

as the factors of safety for surfaces that may be of interest in terms of risk.  The geometry shown 

in Figure A-7-8 was analyzed using SLOPE/W (Spencer Method).  A surface passing through 

the liquefied layer and intersecting the upstream face below the reservoir surface at normal pool 

was one case that, if sliding occurred, would cause widespread damage, and therefore was 

evaluated here.  

Input variables defined as distributions include: (1) effective stress cohesion of the embankment 

material (c’), (2) effective stress friction angle of the embankment material (φ’), and (3) 

undrained residual shear strength of the liquefied sand layer (Su).  No test results were available 

for the embankment materials.  Therefore, the mean, standard deviation, maximum, and 

minimum values listed in Design of Small Dams (BOR, 1987) for SC material (see Table A-7-9) 

were used to define truncated normal distributions for simplicity and illustration purposes.   
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It should be noted that the strength values from Design of Small Dams likely came from tests on 

compacted construction samples and may not be totally representative of saturated embankment 

conditions.  However, both c’ and φ’ from Design of Small Dams are used in this example for 

illustration purposes, and have been negatively correlated in SLOPE/W meaning that higher 

friction angles are correlated with lower cohesion values and vice versa. The potential for 

correlation of the cohesion and friction angle is based on testing of numerous samples, and is 

discussed in one case as part of the previous example. The correlation was assumed to be -0.7 

based on experience with similar materials. A correlation value can range from 0 to 1.0 (or -1.0) 

with 0 indicating no correlation and 1.0 (or -1.0) indicating that higher friction angles will 

always be correlated with higher (or lower) cohesion values. 

Table A-7-9 Summary of embankment input properties (SC) 

Property Minimum Maximu

m 

Mean Standard 

Deviation 

Cohesion, c’ (lb/ft2) 101 1224 720 360 

Friction Angle, φ’ 

(degrees) 

28.4 38.3 33.9 2.9 

 

From the available information at the site, the non-liquefiable alluvial foundation soil was 

assumed to have similar material properties as the embankment soils. In addition, the unit weight 

of the embankment and foundation were assumed to be 120 lb/ft3. It is also assumed that the 

effective stress parameters listed in Table A-7-9 and unit weight are equally applicable above 

and below the phreatic surface. 

Finally, the undrained residual shear strength of the liquefied foundation sand was estimated 

using curves developed by Seed and Harder (Seed et al., 2003).  Upper and lower bound curves 

are provided as a function of corrected SPT blow count.  It was assumed that a strength midway 

between the curves represented the best-estimate value (mode).  A triangular distribution 

between the upper (920 lb/ft2) and lower (400 lb/ft2) bound values, with the mode at the best 
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estimate (660 lb/ft2), for an N1,60,cs of 14, was assigned to this input parameter.  (It is 

recognized that more recent guidance on the selection of residual strengths exists, but for 

simplicity and illustration purposes the Seed and Harder relationship is used for this the 

example.) The unit weight of this layer was assumed to be 115 lb/ft3. 

For this case, 10,000 trials were specified.  For each trial, each input parameter is sampled 

according to its probability density function, and an individual factor of safety is calculated.  

SLOPE/W reports this as a probability of failure where failure is defined as a factor of safety less 

than 1.0. For this analysis, the deterministic factor of safety of 1.08 is shown in Figure A-7-9 and 

the probability of failure is approximately 24% as shown in Figure A-7-10. 

 

Figure A-7-9 Results of Embankment Dam Analysis 
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Figure A-7-10 Results of Probabilistic Analysis in SLOPE/W 

It should be noted that FS>1.0 means the slope would be stable, but does not rule out dam failure 

by another potential failure mode; even if the embankment remains stable, deformation could 

result in transverse cracks through which erosion could occur.  This must be considered in 

evaluating the overall risks posed by the dam and reservoir. In addition, surfaces with “entry” 

points further downstream should also be investigated to check for the potential for retrogressive 

sliding to cut the slope under the reservoir, following movement of the first slide. 

If the probability of the factor of safety being less than a number other than 1.0 needs to be 

evaluated, SLOPE/W also provides a cumulative probability distribution function. As shown in 

Figure A-7-11, the probability of the factor of safety being less than 1.1 is approximately 64%. 
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Figure A-7-11 Probability Distribution Function in SLOPE/W 

A-7.5  Example: Foundation Rock Wedge Stability 

During a corrective action study, it was verified that a concrete arch dam constructed in the 

1920s was founded on a geometrically significant rock wedge. Due to concerns about the 

potential for static and seismic instability of the wedge, the dam was modified with the 

installation of a drainage adit in the right abutment. As indicated by the volume of the measured 

drain flows and by piezometer readings taken before and after the modification, the drainage 

tunnel was successful in lowering uplift pressures in the right abutment area. However, a 

subsequent jump in the piezometer readings (with no accompanying decrease in the drainage 

flows) led to renewed concern and further analysis. Three possible piezometric profiles were 

developed, and stability under both static and seismic conditions was re-evaluated using the 

finite-element method. The finite-element model of the dam/foundation system showed some 

limited movement occurring under strong seismic shaking and no movement under static 

conditions, even with the worst-case uplift scenario assumed. This information was used to 

develop the potential failure modes (PFM). 
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The static version of the right abutment foundation instability PFM included the following five 

events: 

1. Reservoir surface exceeds the critical elevation 

2. Base, side, and release planes exist in situ and are continuous 

3. Critical wedge movement initiates 

4. Movement is significant enough to cause concrete cracking 

5. Arch forces cannot be redistributed and a breach occurs 

Given the initiation of foundation wedge movement, the risk analysis team believed that the 

results of the seismic analysis could be used to inform the probabilities of events 4 (Movement is 

significant enough to cause concrete cracking) and 5 (Arch forces cannot be redistributed and a 

breach occurs). However, since no movement was predicted by the static finite element analysis 

results, the team struggled with how to estimate the probability of the initial foundation wedge 

movement absent seismic loading. Conceptually, the initiation of movement could be tied to a 

drop below 1.0 in the static safety factor, but the static safety factors calculated in previous limit 

equilibrium analyses were all significantly greater than 1.0. Given the relatively high static safety 

factors, the team was also not comfortable with the approach of using the neutral estimate (0.5) 

as a starting point and adjusting up or down based on the more/less likely factors. It was thought 

that such an approach could result in an unrealistically high probability estimate for this key 

event of the static PFM. 

The decision was made to use a probabilistic limit state approach to help inform the probability 

estimates for foundation wedge movement initiation. The three-dimensional wedge stability 

solution of Pierre Londe (see Hendron, Cording, and Aiyer 1980) was programmed into a 

spreadsheet that included the following inputs for each joint plane, in addition to the weight and 

external force resultant: dip and dip direction; position of the wedge with respect to the joint 

plane (above or below it); the magnitude of the uplift force, and; the effective friction angle. For 

each set of inputs, the spreadsheet calculates the sliding mode and the sliding factor of safety 

(Figure A-7-12). As a check, the basic results of the spreadsheet, for each of the three foundation 

uplift scenarios, were compared to the results of the existing limit equilibrium analyses. 
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Next, the deterministic inputs were changed to distributions, whose bounds were selected in 

accordance with the uncertainty considered to apply to the parameters. For example, the dip and 

dip direction of each of the defining discontinuities was expanded to the original value ±3°. The 

base and side plane friction angles were entered as triangular distributions bounded by 39° and 

48° (mode 45°) and by 39° and 52° (mode 50°), respectively. Finally, the upper and lower 

bounds of the resultant force magnitude for each uplift scenario were defined by varying the 

original magnitude by ±20 percent. The rationale for each of the uncertainty ranges selected was 

discussed by the team and would be documented in the risk report. A Monte Carlo simulation 

consisting of 100,000 trials was then performed for each of the three foundation uplift scenarios, 

with the Factor of Safety (FS) defined as the simulation output. 

For the “worst case” uplift scenario (static FS = 1.49), 55 of the 100,000 trials resulted in safety 

factors lower than unity. For the “best estimate” scenario (static FS = 1.59), 2 of the 100,000 

trials resulted in safety factors lower than unity. For the “best case” scenario (static FS = 2.75), 

none of the trials resulted in safety factors lower than unity. Interpreting as probabilities, these 

results suggested wedge movement initiation probabilities of 6x10-4, 2x10-5, and 0 for the “worst 

case”, “best estimate”, and “best case” foundation uplift scenarios, respectively. Note that these 

numbers are small enough to be outside the probability range over which most estimators are 

calibrated (see chapter on Subjective Probability and Expert Elicitation). They should therefore 

be interpreted as simulated frequencies (analogous to, but characterized by significantly more 

uncertainty than, the empirically derived internal erosion initiation probability base rates), rather 

than as subjective probabilities, when used as the starting point for estimation. 

In addition to illustrating the application of the Monte Carlo method in developing probabilities 

to populate an event tree, this example is also relevant to the topic of expert elicitation.  For 

computation of the conditional probability of sliding initiation, the team originally intended to 

use the above results to define a triangular probability distribution, but did not feel comfortable 

using a lower bound of 0, because of epistemic (model) uncertainty that may not have been fully 

accounted for. After considering the use of broader ranges for the inputs (rejected because it was 
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not considered defensible) and the use of a fitted output distribution (rejected because the results 

would be very sensitive to how the distribution was actually fitted), the team judged that 1x10-7 

would be a reasonable lower bound, recognizing the potential, albeit small, for errors or biases in 

the stability model to result in stability being predicted when it would not actually occur. 

 

Figure A-7-12 Input and Output Cells of the Spreadsheet used to Calculate the Stability of 

the Three-Dimensional Wedge 

The team felt that values at the lower end of the range were more likely to be “correct” than 

those at the upper end of the range, and initially adopted the triangular distribution shown in 

Figure A-7-13, with a lower bound and mode of 1x10 7 and an upper bound of 6x10 4.  It was 

subsequently recognized that the shape of this PDF did not capture the team's belief about the 
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lower end being more likely, and that its mean, 2x10-4, was much higher than the team’s “best 

estimate”.  After recognizing that they were accustomed to thinking in terms of a log scale, the 

team members realized that what had really been intended was something more like the 

distribution shown in Figure A 7 14, which is still triangular, but with a logarithmic horizontal 

axis.  It has the same upper and lower bounds, but the mean is much smaller at 1.9x10 6, more in 

keeping with the team's degree of belief. For computation in @Risk, this “log-triangular” 

distribution was approximated using the truncated log-normal distribution in Figure A 7 15, 

which has the same mean and bounds as the team's intended result. Note that the probability 

estimate selected for this event spans an uncertainty range of over three orders of magnitude. For 

this particular application, the team considered such a wide range to be appropriate, but 

concluded that the uncertainty could potentially be reduced through additional field data 

collection (e.g. the installation of additional piezometers), laboratory testing (direct shear), and 

modeling (updated, coupled, finite element analysis). 

 

Figure A-7-13 Triangular Probability Distribution Initially Selected by the Team for 

Foundation Wedge Movement Initiation 
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Figure A-7-14 Log-Triangular Probability Distribution Actually Intended by the Team for 

Foundation Wedge Movement Initiation 

 

Figure A-7-15 Truncated Lognormal Probability Distribution Ultimately Selected by the 

Team for Foundation Wedge Movement Initiation 
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A-7.6  Model Uncertainty 

The preceding discussion provides methods for calculating probabilities considering 

uncertainties in the input parameters of engineering analyses, such as slope stability or heave 

analyses.  This type of uncertainty is sometimes referred to as aleatory or parameter uncertainty.  

However, significant uncertainty also exists regarding how well the models used in the 

calculations actually reflect the real situation.  This is sometimes referred to as epistemic or 

model uncertainty.  Models are just that, limited approximations.  Vick (2002) provides 

additional discussion concerning the limitations of models.   

Some of the models used in the spreadsheet calculations previously described are simplifications 

of complex three-dimensional problems.  For example, the equations used in the RCC dam 

example do not take into account shear resistance along the sides of the sliding block, and it 

would be much more difficult to account for that in the simple spreadsheet model.  This creates a 

conservative bias in the FS calculations, and it is appropriate to interpret the results of the 

numerical reliability analysis in light of that.  This could be done either within the reliability 

analysis, by adjusting the threshold FS that defines failure, or in the application, by adjusting the 

failure probability indicated by the reliability analysis before it is used in the event tree.  Either 

way, the adjustment would include some element of subjectivity, and it has to be recognized that 

the adjustment is itself uncertain.  (See the chapter on Subjective Probability and Expert 

Elicitation.)   

Similarly, there may be simplifications in the model that create unconservative bias.  For 

example, limit-equilibrium stability analysis does not account for strain incompatibility, the 

potential for one material in the sliding surface to be sheared past failure before the strength of 

another material is fully mobilized.  It may be possible to address the bias by the same means as 

in the case of a conservative bias (i.e. by making adjustments at the subjective probability 

estimate level), provided there is adequate treatment of the uncertainty in any adjustments made.  
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